Integrate the rational functions.
∫5x(x+1)(x2−4)dx.
∫5x(x+1)(x2−4)dx=∫5x(x+1)(x+2)(x−2)dx
Let 5x(x+1)(x2−4)=A(x+1)+B(x+2)+C(x−2)......(i)
=A(x+2)(x−2)+B(x+1)(x−2)+C(x+1)(x+2)(x+1)(x+2)(x−2)⇒5x=A(x2−4)+B(x2+x−2x−2)+C(x2+x+2x+2)⇒5x=x2(A+B+C)+x(−B+3C)+(−4A−2B+2C)
On comparing the coefficients of x2,x and constant term on both sides, we get
A+B+C =0 ....(ii)
-B +3C =5....(iii)
and -4A-2B +2C =0 ....(iv)
Multiply by 4 in Eq. (ii) and then adding with Eq. (iv), we get
2(B+3C)=0....(v)
On adding Eqs. (iii)and (v), we get C=56
On putting the value of C in Eq. (v), we get B=−52
On putting the values of B and C in Eq. (ii), we get A=53
∴∫5x(x+1)(x−2)(x+2)dx=∫53(x+1)dx−∫52(x+2)dx+∫56(x−2)dx=53∫1(x+1)dx−52∫1(x+2)dx+56∫1(x−2)dx=53log|x+1|−52log|x+2|+56log|x−2|+C