Integrate the rational functions.
∫cosx(1−sinx)(2−sinx)dx.
Let I=∫cosx(1−sinx)(2−sinx)dx
Put sinx=t⇒cosx=dtdx⇒dx=dtcosx
∴I=∫cosx(1−t)(2−t)dtcosx=∫1(1−t)(2−t)dt=∫[A1−t+B2−t]dt......(i)∴1(1−t)(2−t)=A(2−t)+B(1−t)(1−t)(2−t)⇒1=2A−tA+B−Bt⇒1=1(2A+B)+t(−A−B)
On comparing the coefficients of t and constant term on both sides, we get
2A +B =1 and -A-B =0
On adding above equations, we get
A=1 and then B=1
∴I=∫(11−t−12−t)dt [from Eq.(i)]=∫1(1−t)dt−∫1(2−t)dt=log|1−t|(−1)−log|2−t|(−1)+C=log∣∣2−t1−t∣∣+C=log∣∣2−sinx1−sinx∣∣+C (Put t =sin x)