Integrate the rational functions.
∫(x2+1)(x2+2)(x3+3)(x2+4)dx
Here, the degree of numerator and denominator are 4. So, we convert it into simple form by putting x2=t.
(x2+1)(x2+2)(x2+3)(x2+4)=(t+1)(t+2)(t+3)(t+4)=t2+3t+2t2+7t+12
Since, degree of numerator and denominator is same, so it can be written as
1−4t+10t2+7t+12
Now, ∫(x2+1)(x2+2)(x2+3)(x2+4)dx=∫1dx−∫(4t+10)t2+7t+12dx
=∫1dx−∫4t+10(t+3)(t+4)dx.....(i)
Let 4t+10(t+4)(t+3)=A(t+4)+B(t+3)⇒4t+10(t+3)(t+4)=A(t+3)+B(t+4)(t+4)(t+3)
⇒4t+10=At+3A+Bt+4B⇒4t+10=t(A+B)+(3A+4B)
On comparing the coefficients of t and constant term on both sides, we get
A+B=4⇒3A+3B=12......(ii)
and 3A+4B =10
On subtracting Eq. (iii)from Eq. (ii), we get
−B=2⇒B=−2 and A=6∴4t+10(t+4)(t+3)=6t+4−2t+3
On putting this value in Eq. (i)we get
∫(x2+1)(x2+2)(x3+3)(x2+4)dx=∫1dx−∫[6t+4−2t+3]dx=∫1dx−∫(6x2+4−2(x2+3))dx [Put t=x2]⇒∫(x2+1)(x2+2)(x2+3)(x2+4)dx=∫1dx−∫(6x2+22−2x2+(√3)2)dx⇒∫(x2+1)(x2+2)(x2+3)(x2+4)dx=x−6(12tan−1x2)+2(1√3tan−1x√3)+C(∵∫1a2+x2dx=1atan−1xa)=x−3tan−1x2+2√3tan−1x√3+C