Integrate the rational functions.
∫x(x−1)2(x+2)dx.
Let x(x−1)2(x+2)=Ax−1+B(x−1)2+Cx+2....(i)
⇒x+A(x−1)(x+2)+B(x+2)+C(x−1)2........(ii)
On substituting x=1, -2 in Eq. (ii), we get
1=B(1+2) and−2=C(−2−1)2⇒B=13 and C=−29
On equating the coefficient of x2 on both sides in Eq. (ii), we get
0=A+C⇒A=−C=29
∴∫x(x−1)2(x+2)dx=∫{29x−1+13(x−1)2+(−29)x+2}dx (from Eq.(i))
⇒∫x(x−1)2(x+2)dx=29∫1x−1dx+13∫1(x−1)2dx−29∫1x+2dx=29log|x−1|+13(x−1)−2+1(−2+1)−29log|x+2|+C=29log∣∣x−1x+2∣∣−13(1x−1)+C[∵logb−loga=log(ba)]