Integrate the rational functions.
∫x(x+1)(x+2)dx.
∫x(x+1)(x+2)dx.Let x(x+1)(x+2)=A(x+1)+B(x+2)⇒x(x+1)(x+2)=A(x+2)+B(x+1)(x+1)(x+2)⇒x=Ax+2A+Bx+B⇒x=x(A+B)+2A+B
On equating the coefficients of x and constant term on both sides, we get
A+B=1 ......(i)
and 2A+B =0 .......(ii)
On subtracting Eq. (ii)From Eq. (i)we get −A=1⇒A=−1
Now, on putting the value of A in Eq.(i), we get -1+B =1 ⇒B=2
∴∫x(x+1)(x+2)dx=∫(−1)x+1dx+∫2x+2dx=−log(x+1)+2log(x+2)+C=−log(x+1)+log(x+2)2+C=log∣∣∣(x+2)2x+1∣∣∣+C[∵logb−loga=logba]