Integrate the rational functions.
∫x(x−1)(x−2)(x−3)dx.
∫x(x−1)(x−2)(x−3)dx
Let x(x−1)(x−2)(x−3)=A(x−1)+B(x−2)+C(x−3)
⇒x(x−1)(x−2)(x−3)=A(x−2)(x−3)+B(x−1)(x−3)+C(x−1)(x−2)(x−1)(x−2)(x−3)⇒x=A[x2−2x−3x+6]+B[x2−4x+3]+C[x2−x−2x+2]⇒x=x2(A+B+C)+x(−5A−4B−3C)+(6A+3B+2C)
On comparing the coefficients of x2, x and constant term on both sides, we get
A+B+C=0⇒A=−(B+C)........(i)
-5A -4B-3C=1 ...........(ii)
and 6A+3B +2C =0........(iii)
On putting the value of A in Eqs. (ii)and (iii), we get
−5(−(B+C))−4B−3C=1⇒5B+5C−4B−3C=1⇒B+2C=1......(iv)
and 6(−(B+C))+3B+2C=0⇒−3B−4C=0........(v)
Multiplying by 3 in Eq. (iv) and then adding in Eq. (v), we get C =32
On putting the value of C in Eq. (iv), we get B+2×32=1⇒B=−2.
Now, put the values of B and C in Eq. (i), we get
A−2+32=0⇒A=4−32=12∴A=12,B=−2 and C=32
Now, ∫x(x−1)(x−2)(x−3)dx=∫A(x−1)dx+∫B(x−2)dx+∫C(x−3)dx
=12∫1(x−1)dx−2∫1(x−2)dx+32∫1(x−3)dx=12log|x−1|−2log|x−2|+32log|x−3|+C