Integrate the rational functions.
∫x(x2+1)(x−1)dx.
∫x(x2+1)(x−1)dx
First, we reslove the given integrand into partial fractions.
Let x(x2+1)(x−1)=Ax−1+Bx+Cx2+1......(i)
⇒x=A(x2+1)+(Bx+C)(x−1).........(ii)
Substituting x=1 and 0 in Eq. (ii), we get
1=A(2) and 0=A−C⇒A=12 and C=A=12
On equating the coefficient of x2 on the both sides in Eq. (ii), we get
0=A+B⇒B=−A=−12∴∫x(x2+1)(x−1)dx=∫{12x−1+(−12x+12)x2+1}dx=12∫1x−1dx+12∫(−x+1)x2+1dx=12∫1x−1dx−12∫xx2+1dx+12∫1x2+1dx=12log|x−1|−14I1+12tan−1x+C1.......(iii)
where, I1=∫2xx2+1dx. Let (x2+1)=t⇒2xdx=dt
∴I1=∫dtt=log|t|+C2=log|x2+1|+C2
On putting these values in Eq. (iii), we get
∫x(x2+1)(x−1)dx=12log|x−1|−14log|x2+1|+12tan−1x+C[C=C1+C2]