Integrate with respect to x:e2xe2x−2.
Consider the given integral.
I=∫e2Xe2X−2dx
t=e2X−2
dx=dt2e2X
=12∫1tdt
=12ln(t)+C
=12ln(e2X−2)+C
Hence, this is the required result
Match the statements of Column I with values of Column II Column IColumn II(A) ∫e2x−2exe2x+1dx=A ln(e2x+1)+B tan−1(ex)+c(p) A=−12, B=−14(B) ∫√x+√x2+2dx=A{x+√x2+2}32+B√x+√x2+2+c(q) A=12, B=−2(C) ∫cos 8x−cos 7x1+2 cos 5xdx=A sin 3x+B sin 2x+c(r) A=13, B=−2(D) ∫ln xx3dx=Aln xx2+Bx2+c(s) A=13, B=−12
Find the integral of the given function w.r.t - x
y=e2x+1x2