Consider the given integral.
I=∫x√x+2dx
Put,
u=x+2⇒du=dx
Therefore,
I=∫u−2√udu
I=∫(√u−2√u)du
I=∫√udu−2∫1√udu
I=23(u)3/2−4√u+C
Now, return the value of x.
I=23(x+2)3/2−4√x+2+C
I=2√x+2(x+2−6)3+C
I=2√x+2(x−4)3+C
Hence, this is the required value of the integral.