wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate with respect to x:
sec3x

Open in App
Solution

I=sec3xdx
=secx.sec2xdx
using formula of integration by parts:
I=secx.sec2dx(secx)1(sec2xdx)
=secx.tanx(secxtanx)(tanx)dx
secxtanxsecx.tan2xdx
secxtanxsecx(sec2x1)dx
secx.tanxsec3xdx+secxdx
I=secx.tanxI+|n|secx+tanx|+C
2I=secx.tanx+|n|secx+tanx|+C
I=12secx.tan+12|n|secx+tanx|+C
Identities used:
f(x)g(x)dx=f(x)g(x)f(x)[g(x)dx]dx
sec2xdxtanx+C
secxdxIn|secx+tanx|+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon