wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate x-sinx1-cosx.


Open in App
Solution

Step 1: Separate the numerator

The given expression is x-sinx1-cosx.

Let its integration be I.

I=x-sinx1-cosxdx

=x1-cosxdx-sinx1-cosxdx

Step 2: Substitute the trigonometric identities

We know that 1-cosx=2sin2x2 and sinx=2sinx2cosx2

I=x2sin2x2dx-2sinx2cosx22sin2x2dx

=12xcosec2x2dx-cotx2dx

Step 3: Apply Integration By parts

Using integration by parts where u.vdx=uvdx-u'vdxdx we get,

I=12x.2-cotx2-1.-2cotx2dx-cotx2dx

=-xcotx2+cotx2dx-cotx2dx

=-xcotx2+c

where c is the constant of integration.

Hence, when x-sinx1-cosx is integrated we get-xcotx2+c.


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon