Integration of an integrable function f(x) gives a family of curves which differ by a constant value.
A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A True Let ddx(F(x)) = f(x). We saw that in that case, ∫f(x)=F(x)+C, where c is any number. We know that the functions F(x) and F(x)+5 are different. So, as we change c, we get different functions. This means, when we integrate a function, we get a collection of functions, which differ by a constant. For example, if we integrate 2x, we will get functions of the form x2+k, where k is a constant. If we plot those graphs for different values of k, we will get the following figure