Intersection points of tangents and normal at the extremities of latus rectum of the parabola y2=4ax will form a square.
Let the parabola be y2=4ax and extremities of latus
rectum are (a,2a) & (a,-2a)
P is the point of intersection of two tangents
Equation of tangent at A
yy1=2a(x+x1)
y(2a)=2a(x+a)
y=x+a .........(1)
Equation of tangent at B
y(−2a)=2a(x+a)
y=−x−a .........(2)
For intersection point of tangent,
Solving equation (1) & (2)
x+a=x-a
2x=-2a
x=-a,y=0
Coordinates of Point P(-a,0)
Now, we shall calculate the equation of normal at point A
Slope of normal =−1slope of tangent=−11=−1
Equation of normal at point A
y−2a=−1(x−a)
y=−x+a+2a
y=−x+3a .........(3)
Slope of normal at through point B
=−1−1=1
Equation of normal at point B
y−(−2a)=1(x−a)
y=x−a−2a
y=x−3a .........(4)
Soving equation (3) & (4)
We get, x=-3a
y=0
Coordinatenof point L (-3a,0)
Coordinates of point A (a,2a), P(-a,0), B(a,-2a) L(3a,0)
we need to check whether APBL is square
So, calculating the length of AP=√(a+a)2+(2a)2=2√2a
PB=√(−a−a)2+(−2a)2=2√2a
BL=√(a−3a)2+(−2a)2=2√2a
AL=√(3a−a)2+(2a)2=2√2a
In square diagonals of the square bisects each other.
Here, we see. Intersection points of diagonals
M(−a+32,0)=M(a+a2,2a−2a2)=M(a,0)
and
PM=ML=AM=BM
So,APBL is a square.