wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Inverse circular functions,Principal values of sin1x,cos1x,tan1x.
tan1x+tan1y=tan1x+y1xy, xy<1
π+tan1x+y1xy, xy>1.
If u=cot1[cos2θ]tan1[cos2θ], then prove that sinu=tan2θ.

Open in App
Solution

we have u=cot1cos2θtan1cos2θ
=tan1(1/cos2θ)tan1cos2θ
=tan11/(cos2θ)cos2θ1+[1/9cos2θ)](cos2θ)
=tan11cos2θ2(cos2θ)
tanu=1cos2θ2(cos2θ)
or cotu=2cos2θ1cos2θ
Hence cosec2u=1+cot2u
=1+4cos2θ(1cos2θ)2=(1+cos2θ)2(1cos2θ)2
or cosecu=1+cos2θ1cos2=2cos2θ2sin2θ=cot2θ
or sinu=tan2θ.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of a Right Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon