Inverse circular functions,Principal values of sin−1x,cos−1x,tan−1x.
tan−1x+tan−1y=tan−1x+y1−xy, xy<1
π+tan−1x+y1−xy, xy>1.
(a) If sin−12p1+p2−cos−11−q21+q2=tan−12x1−x2
then prove that x=p−q1+pq.
(b) Solve for x
sin−12a1+a2+sin−12b1+b2=2tan−1x
(c) Prove that
tan[12sin−12a1+a2+12cos−11−a21+a2]=2a1−a2.