1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Physics
Basic Differentiation Rule
Inverse circu...
Question
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a) Given
0
≤
x
≤
1
2
then the value of
t
a
n
[
s
i
n
−
1
{
x
√
2
+
√
1
−
x
2
√
2
}
−
s
i
n
−
1
x
]
is
(b) If
α
=
s
i
n
−
1
4
5
+
s
i
n
−
1
1
3
and
β
=
c
o
s
−
1
4
5
+
c
o
s
−
1
1
3
,
Open in App
Solution
(a) . Put
x
=
s
i
n
θ
s
i
n
−
1
(
1
√
2
s
i
n
θ
+
1
√
2
c
o
s
θ
)
=
s
i
n
−
1
s
i
n
(
θ
+
π
4
)
=
θ
+
π
4
∴
E
=
t
a
n
[
θ
+
π
4
−
θ
]
=
t
a
n
π
4
=
1
(b) .
α
=
s
i
n
−
1
[
4
5
√
1
−
1
9
+
1
3
√
1
−
16
25
]
=
s
i
n
−
1
[
8
√
2
15
+
3
15
]
=
s
i
n
−
1
(
8
√
2
+
3
15
)
Since
8
√
2
+
3
15
<
1
∴
α
<
π
2
............(I)
β
=
(
π
2
−
s
i
n
−
1
4
5
+
π
2
−
s
i
n
−
1
1
3
)
=
π
−
α
>
π
2
by (I)
∴
α
<
β
⇒
(a)
Suggest Corrections
1
Similar questions
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
Evaluate
(a)
c
o
s
−
1
x
+
c
o
s
−
1
[
x
2
+
√
(
3
−
3
x
2
)
2
]
(
1
2
≤
x
≤
1
)
(b)
c
o
s
(
2
c
o
s
−
1
x
+
s
i
n
−
1
x
)
at
x
=
1
/
5
,
where
0
≤
c
o
s
−
1
x
≤
π
and
−
π
/
2
≤
s
i
n
−
1
x
≤
π
/
2
Q.
Inverse circular functions,Principal values of
sin
−
1
x
,
cos
−
1
x
,
tan
−
1
x
.
tan
−
1
x
+
tan
−
1
y
=
tan
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
tan
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
Prove that
tan
−
1
1
−
x
1
+
x
tan
−
1
1
−
y
1
+
y
=
sin
−
1
y
−
x
√
1
+
x
2
√
1
+
y
2
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a)
s
i
n
−
1
(
1
−
x
)
−
2
s
i
n
−
1
x
=
π
/
2
.
(b) If
s
i
n
−
1
x
+
s
i
n
−
1
(
1
−
x
)
=
c
o
s
−
1
x
, then prove that x is equal to
0
,
1
/
2
.
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
Solve
(a)
c
o
s
(
2
s
i
n
−
1
x
)
=
1
/
9
(b)
c
o
s
−
1
(
3
/
5
)
−
s
i
n
−
1
(
4
/
5
)
=
c
o
s
−
1
x
(c) If
s
i
n
(
s
i
n
−
1
1
5
+
c
o
s
−
1
x
)
=
1
, then prove that x is equal to
1
/
5
.
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a) If
s
i
n
−
1
x
+
s
i
n
−
1
y
+
s
i
n
−
1
z
=
3
π
/
2
, then the value of
x
100
+
y
100
+
z
100
−
9
x
101
+
y
101
+
z
101
is
(b)
s
i
n
−
1
a
x
c
+
s
i
n
−
1
b
x
c
=
s
i
n
−
1
x
where
a
2
+
b
2
=
c
2
,
c
≠
0
.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Differentiation
PHYSICS
Watch in App
Explore more
Basic Differentiation Rule
Standard XII Physics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app