Inverse circular functions,Principal values of sin−1x,cos−1x,tan−1x. tan−1x+tan−1y=tan−1x+y1−xy, xy<1 π+tan−1x+y1−xy, xy>1. (a) sin−1(1−x)−2sin−1x=π/2. (b) If sin−1x+sin−1(1−x)=cos−1x, then prove that x is equal to 0,1/2.
Open in App
Solution
(a) The given equation can be written as sin−1(1−x)=π/2+2sin−1x Taking sine, we get 1−x=cos(2sin−1x)=1−2(sinsin−1x)2 or 1−x=1−22x or x=2x2 ∴x=0 or 1/2, A check shows that x=1/2 is not a root. Hence x=0 is the only root. (b) sin−1[x√1−(1−x)2+(1−x)√(1−x2)]=sin−1√1−x2 ∴x√2x−x2=√1−x2[1−(1−x)]=x√1−x2 ∴x=0 or 2x−x2=1−x2 or x=1/2