1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Domain and Range of Basic Inverse Trigonometric Functions
Inverse circu...
Question
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
Prove
(a)
s
i
n
−
1
4
5
+
s
i
n
−
1
5
13
+
s
i
n
−
1
16
65
=
π
2
(b)
s
i
n
−
1
3
5
+
s
i
n
−
1
8
17
=
c
o
s
−
1
36
85
(c)
s
i
n
−
1
3
5
+
c
o
s
−
1
12
13
=
c
o
s
−
1
33
65
Open in App
Solution
To prove
s
i
n
−
1
(
4
/
5
)
+
s
i
n
−
1
(
5
/
13
)
π
2
−
s
i
n
−
1
16
65
=
c
o
s
−
1
(
16
65
)
.
Now
s
i
n
−
1
x
±
s
i
n
−
1
y
=
s
i
n
−
1
[
x
√
1
−
y
2
±
y
√
1
−
x
2
]
.
L.H.S.
=
s
i
n
−
1
[
4
5
√
(
1
−
25
169
)
+
5
12
√
(
1
−
16
25
)
]
=
s
i
n
−
1
(
4
5
,
12
13
+
5
13
,
3
5
)
=
s
i
n
−
1
(
48
65
+
15
65
)
=
s
i
n
−
1
63
65
and R.H.S.
=
c
o
s
−
1
(
16
/
65
)
=
s
i
n
−
1
(
63
/
65
)
Suggest Corrections
1
Similar questions
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
Solve
(a)
c
o
s
(
2
s
i
n
−
1
x
)
=
1
/
9
(b)
c
o
s
−
1
(
3
/
5
)
−
s
i
n
−
1
(
4
/
5
)
=
c
o
s
−
1
x
(c) If
s
i
n
(
s
i
n
−
1
1
5
+
c
o
s
−
1
x
)
=
1
, then prove that x is equal to
1
/
5
.
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a) Solve the equation :
c
o
s
−
1
(
√
6
x
)
+
c
o
s
−
1
(
3
√
3
x
2
)
=
π
2
(b) If
s
i
n
1
6
x
+
s
i
n
−
1
6
√
3
x
=
−
π
/
2
, then
x
=
.
.
.
.
.
.
.
(c)
s
i
n
−
1
x
+
s
i
n
−
1
2
x
=
π
/
3
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
Prove that
(a)
2
t
a
n
−
1
1
5
+
s
e
c
−
1
5
√
2
7
+
2
t
a
n
−
1
1
8
=
π
4
(b)
c
o
s
−
1
12
13
+
2
c
o
s
−
1
√
(
64
65
)
+
c
o
s
−
1
√
(
49
50
)
=
c
o
s
−
1
1
√
2
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a) Solve the equation
t
a
n
−
1
2
x
+
t
a
n
−
1
3
x
=
n
π
+
(
π
/
4
)
.
(b) Find all the positive integral solutions of
t
a
n
−
1
x
+
c
o
s
−
1
(
y
√
1
+
y
2
)
=
s
i
n
−
1
(
3
√
10
)
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
Evaluate
(a)
c
o
s
−
1
x
+
c
o
s
−
1
[
x
2
+
√
(
3
−
3
x
2
)
2
]
(
1
2
≤
x
≤
1
)
(b)
c
o
s
(
2
c
o
s
−
1
x
+
s
i
n
−
1
x
)
at
x
=
1
/
5
,
where
0
≤
c
o
s
−
1
x
≤
π
and
−
π
/
2
≤
s
i
n
−
1
x
≤
π
/
2
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Explore more
Domain and Range of Basic Inverse Trigonometric Functions
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app