wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Inverse circular functions,Principal values of sin1x,cos1x,tan1x.
tan1x+tan1y=tan1x+y1xy, xy<1
π+tan1x+y1xy, xy>1.
(a) If cos1p+cos1q+cos1r=π, then prove that
p2+q2+r2+2pqr=1
(b) If sin1x+sin1y+sin1z=π, then prove that
x4+y4+z4+4x2y2z2=2(x2y2+y2z2+z2x2)
(c) If tan1x+tan1y+tan1z=π or π/2 show that
x+y+z=xyzor xy+yz+zx=1.

Open in App
Solution

(a) cos1p+cos1q+cos1r=π
cos1[pq1p2.1q2]=πcos1r=cos1(r).
pq(1p2)(1q2)=r
or (pq+r)2=(1p2)(1q2)
or p2q2+r2+2pqr=1p2q2+p2q2
or p2+q2+r2+2pqr=1.
(b) sin1x+sin1y=πsin1z
Take cos of both sides and not sine for easy simplification.
cos(sin1t)=cos(cos11t2)=(1t2)
1x21y2xy=1z2
(1x2(1y2)=x2y2+(1z2)2xy1z2
1x2y2=1z22xy1z2
x2+y2z2=2xy1z2, Square again
(c) L.H.S. =tan1(x+y)1xy+tan1z
=tan1[(x+y)/(1xy)]+z1[(x+y)/(1xy)],z
=tan1x+y+zxyz1xyyzzx=π or π2
x+y+zxyz1xyyzzx=tanπ or tanπ2
or =0 or
Hence x+y+zxyz=0 i.e. Nr=0
i.e. x+y+z=xyz
or 1xyyzzx=0 i.e. Dr=0
i.e. xy+yz+zx=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon