(a) L.H.S.
=2(tan−115+tan−118)+tan−1
⎷⎡⎣(5√27)2−1⎤⎦
=2tan−11/5+1/81−(1/5).(1/8)+tan−117
∵sec−1x=tan−1√x2−1
=2tan−11339+tan−117=2tan−113+tan−117
=tan−12.1/31−1/9+tan−117=tan−134+tan−117
=tan−13/4+1/71−(3/4).(1/7)=tan−12525
=tan−11=π4.
(b) cos−1x=tan−1√1−x2x.
∴ cos−11213=tan−1√1−144/16912/13=tan−1512
cos−1√(4950)=tan−1√1−49/50√(49/50)=tan−117.
Similarly cos−1√64/65=tan−1(1/8),
cos−1(1/√2)=tan−11=π/4
Thus we have to prove that
tan−1(5/12)+2tan−1(1/8)+tan−1(1/7)=tan−11
or tan−15/12+1/71−(5/12).(1/7)=tan−11−tan−12.1/81−1/64
or tan−1(47/49)=tan−11−tan−1(16/63)
or tan−14779=tan−11−(16/63)1+(16/63)=tan−14779.