wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Inverse circular functions,Principal values of sin1x,cos1x,tan1x.
tan1x+tan1y=tan1x+y1xy, xy<1
π+tan1x+y1xy, xy>1.
Prove that
(a) 2tan115+sec1527+2tan118=π4
(b) cos11213+2cos1(6465)+cos1(4950)=cos112

Open in App
Solution

(a) L.H.S.
=2(tan115+tan118)+tan1 (527)21
=2tan11/5+1/81(1/5).(1/8)+tan117
sec1x=tan1x21
=2tan11339+tan117=2tan113+tan117
=tan12.1/311/9+tan117=tan134+tan117
=tan13/4+1/71(3/4).(1/7)=tan12525
=tan11=π4.
(b) cos1x=tan11x2x.
cos11213=tan11144/16912/13=tan1512
cos1(4950)=tan1149/50(49/50)=tan117.
Similarly cos164/65=tan1(1/8),
cos1(1/2)=tan11=π/4
Thus we have to prove that
tan1(5/12)+2tan1(1/8)+tan1(1/7)=tan11
or tan15/12+1/71(5/12).(1/7)=tan11tan12.1/811/64
or tan1(47/49)=tan11tan1(16/63)
or tan14779=tan11(16/63)1+(16/63)=tan14779.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon