(a) 21=1+5.4, 13=1+4.3, −1/8=−2/16 and 6=1+5.3, T1=tan−15−41+5.4=tan−15−tan−14 T2=tan−14−tan−13 T3=tan−1−21+15=tan−13−tan−15 ∴sum=0 Note : You may combine first two terms to get tan−1(34272)=tan−1(18) (b) We have to prove tan−1125=2tan−123. Now R.H.S.=tan−12(2/3)1−(4/9)=tan−1(4/3)(5/9). =tan−1(12/5)=L.H.S. (c) L.H.S.=tan−114+tan−129=tan−11/4+2/91−(1/4)(2/9) =tan−112=12.2tan−112 =12tan−12(1/2)1−(1/4)=12tan−143=12cos−135,