(a) We have
3(2tan−1x)−4(2tan−1x)+2(2tan−1x)=π3.
or 2tan−1x=π3 ∴ tan−1x=π6
or x=tan(π6)=1√3.
(b) Let 15cos−1x=α
Since 0≤cos−1x≤π,
we have 0≤α≤π5
Hence sinα≠1, that is, sin(15cos−1x)=1 has no solution,
(c) Above equation is defined if x2+x≥0
and x2+x+1≥0 but ≤1
i.e., 0≤x2+x+1≤1
Above is possible only when x2+x=0
or x(x+1)=0 ∴ x=0,−1.