Inverse circular functions,Principal values of sin−1x,cos−1x,tan−1x.
tan−1x+tan−1y=tan−1x+y1−xy, xy<1
π+tan−1x+y1−xy, xy>1.
(a) Find whether x=2 satisfies the equation
tan−1x+1x−1+tan−1x−1x=tan−1(−7)
If not, then how should the equation be re-written ?
(b) tan−143+tan−156+tan−1392−π=.....
(c) If x1,x2,x3,x4 are roots of equation x4−x3sin2β+x2cos2β−xcosβ−sinβ=0, then prove that ∑4i=1tan−1x1=π2−β