CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Inverse circular functions,Principal values of sin1x,cos1x,tan1x.
tan1x+tan1y=tan1x+y1xy, xy<1
π+tan1x+y1xy, xy>1.
(a) Find whether x=2 satisfies the equation
tan1x+1x1+tan1x1x=tan1(7)
If not, then how should the equation be re-written ?
(b) tan143+tan156+tan1392π=.....
(c) If x1,x2,x3,x4 are roots of equation x4x3sin2β+x2cos2βxcosβsinβ=0, then prove that 4i=1tan1x1=π2β

Open in App
Solution

(a) tan1x+1x1+x1x1x+1x1.x1x=tan1(7)
2x2x+11x=7 or 2x2x+1=7+7x
or 2x28x+8=0 or 4x+4=0
or (x2)2=0, x=2
But if we put x=2 in the given equation the L.H.S. is +ive and R.H.S. is ive. Hence x=2 does not satisfy. We will have to write the equation as
tan1x+1x1+tan1x1x=π+tan1(7)
Now x=2 will make both sides +ive
Note : Here xy=x+1x1x1x=x+1x>1
R.H.S. =π+tan1(7)
(b) Since ab>1, combine first two terms
L.H.S.=π+tan1(392)+tan1(392)π=0
(c) p1=x1=sin2β
p2=x1x2=cos2β
p3=x1x2x3=cosβ
p4=x1x2x3x4=sinβ
tan1x1+tan1x2+tan1x3+tan1x4=tan1p1p31p2+p4......(1)
p1p3=sin2βcosβ=cosβ(2sinβ1)
1p2+p4=1cos2βsinβ
=2sin2βsinβ=sinβ(2sinβ1)
tan1p1p31p2+p4=tan1(cosβsinβ)
=tan1(cotβ)=tan1[tan(π2β)]=π2β

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon