(a) If cos−1(√5/3)=θ,0<θ<π/2 then cosθ=√5/3 and sinθ=√1−cos2θ=√1−5/9 =√4/9=2/3 ∴tan[12cos−1√53]=tanθ2 =1−cosθsinθ=[1−(√5/3)](2/3)=3−√52 (b) ∵2tan−1(15)=tan−12.(1/5)1−(1/5)2=tan−1512 and π/4=tan−11, we have tan[2tan−1(1/5)−π/4] =tan[tan−1(5/12)−tan−11] =tantan−1(5/12)−11+(5/12).1 =tantan−1(−717)=−717