(a) From the given question
√1+x2−√1+x2√(1+x2)+√(1−x2)=tanα=sinαcosα.
Apply componendo and dividendo
2√1+x22√(1−x2)=cosα+sinαcosα−sinαSquare
1+x21−x2=1+sin2α1−sin2α, ∵ cos2α+sin2α=1
and 2sinαcosα=sin2α.
Hence x2=sin2α from above.
Alternative : Put x2=cosθ. Rest do yourself or put x2=sin2α
∴ √1+x2=√1+sin2α=cosα+sinα etc.
(b) From the given relation, we get
mn=cos2θtanθtan(α−θ)cos2(α−θ)
=2sinθcosθ2sin(α−θ)cos(α−θ)=sin2θsin(2α−2θ)
Now applying componendo and dividendo, we get
n+mn−m=sin(2α−2θ)+sin2θsin(2α−2θ)−sin2θ=2sinαcos(α−2θ)2cosαsin(α−2θ)
or tan(α−2θ)=n−mn+mtanα
∴ α−2θ=tan−1(n−mn+mtanα)
or θ=12[α−tan−1(n−mn+mtanα)].
(c) Let cos−1cosα+cosβ1+cosαcosβ=θ
∴ cosθ1=cosα+cosβ1+cosαcosβ
Apply componendo and dividendo
1−cosθ1+cosθ=(1−cosα)(1−cosβ)(1+cosα)(1+cosβ)
or tan2θ2=tan2α2tan2β2
∴ tanθ2=tanα2tanβ2
∴ θ=2tan−1(tanα2tanβ2)