CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Inverse circular functions,Principal values of sin1x,cos1x,tan1x.
tan1x+tan1y=tan1x+y1xy, xy<1
π+tan1x+y1xy, xy>1.
(a) If tan11+x21x2(1+x2)+(1+x2)=α. then prove that x2=sin2α
(b) If mtan(αθ)cos2θ=ntanθcos2(αθ), then prove that θ=12[αtan1(nmn+mtanα)]
(c) cos1cosα+cosβ1+cosαcosβ=2tan1(tanα2tanβ2)

Open in App
Solution

(a) From the given question
1+x21+x2(1+x2)+(1x2)=tanα=sinαcosα.
Apply componendo and dividendo
21+x22(1x2)=cosα+sinαcosαsinαSquare
1+x21x2=1+sin2α1sin2α, cos2α+sin2α=1
and 2sinαcosα=sin2α.
Hence x2=sin2α from above.
Alternative : Put x2=cosθ. Rest do yourself or put x2=sin2α
1+x2=1+sin2α=cosα+sinα etc.
(b) From the given relation, we get
mn=cos2θtanθtan(αθ)cos2(αθ)
=2sinθcosθ2sin(αθ)cos(αθ)=sin2θsin(2α2θ)
Now applying componendo and dividendo, we get
n+mnm=sin(2α2θ)+sin2θsin(2α2θ)sin2θ=2sinαcos(α2θ)2cosαsin(α2θ)
or tan(α2θ)=nmn+mtanα
α2θ=tan1(nmn+mtanα)
or θ=12[αtan1(nmn+mtanα)].
(c) Let cos1cosα+cosβ1+cosαcosβ=θ
cosθ1=cosα+cosβ1+cosαcosβ
Apply componendo and dividendo
1cosθ1+cosθ=(1cosα)(1cosβ)(1+cosα)(1+cosβ)
or tan2θ2=tan2α2tan2β2
tanθ2=tanα2tanβ2
θ=2tan1(tanα2tanβ2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon