(a) Since sin−11213=tan−1125
and cos−145=tan−134, we have
L.H.S. =tan−1125+tan−134+tan−16316
and since 125×34>1, we have
tan−1125+tan−134=π+tan−1(12/5)+(3/4)1−(12/5).(3/4)
=π+tan−1{−6316}
=π+tan−16316 [∵tan−1(−x)=−tan−1x]
Hence
L.H.S. =π−tan−16316+tan−16316=π= R.H.S.
(b) As in part (a), we will change each term to tan−1
2cos−13√13=cos−1(2x2−1)
=cos−1513=tan−11213
cot−11663=tan−16316
12cos−1725=θsay, ∴ 2θ=725
or 1−t21+t2=725 ∴t2=916 or t=34,−34
Since cos2θ=+ive 0≤2θ<π
∴ 0≤θ<π/2
and hence t=tanθ=+ive ∴tanθ=3/4
∴ L.H.S. =tan−11213+tan−16316+tan−134
Rest as in part (a).