wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Inverse circular functions,Principal values of sin1x,cos1x,tan1x.
tan1x+tan1y=tan1x+y1xy, xy<1
π+tan1x+y1xy, xy>1.
(a) sin11213+cos145+tan16316=π
(b) 2cos1313+cot11663+12cos1725=π

Open in App
Solution

(a) Since sin11213=tan1125
and cos145=tan134, we have
L.H.S. =tan1125+tan134+tan16316
and since 125×34>1, we have
tan1125+tan134=π+tan1(12/5)+(3/4)1(12/5).(3/4)
=π+tan1{6316}
=π+tan16316 [tan1(x)=tan1x]
Hence
L.H.S. =πtan16316+tan16316=π= R.H.S.
(b) As in part (a), we will change each term to tan1
2cos1313=cos1(2x21)
=cos1513=tan11213
cot11663=tan16316
12cos1725=θsay, 2θ=725
or 1t21+t2=725 t2=916 or t=34,34
Since cos2θ=+ive 02θ<π
0θ<π/2
and hence t=tanθ=+ive tanθ=3/4
L.H.S. =tan11213+tan16316+tan134
Rest as in part (a).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon