wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Inverse circular functions,Principal values of sin1x,cos1x,tan1x.
tan1x+tan1y=tan1x+y1xy, xy<1
π+tan1x+y1xy, xy>1.
Prove that
tan1(12tan2A)+tan1(cotA)+tan1(cot3A)
0 if π/4<A<π/2
and =π if 0<A<π/4.

Open in App
Solution

First note that cotA>1 if 0<A<π/4
and cotA<1 if π/4<A<π/2 Hence
tan1(cotA)+tan1(cot3A)
=π+tan1cotA+cot3A1cot4A if 0<A<π4
and =tan1cotA+cot3A1cot4A if π4<A<π2.
Also cotAcot3A1cot4A=cotA1cot2a
=cosAsinA(sin2Acos2A)
=sin2A2cos2A=12tan2A
Hence tan1(12tan2A)+tan1(cotA)+tan1(cot3A)
=π in the first case,
=0 in the 2nd case because
tan1(x)=tan1x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon