The correct option is C 1n(−1)a+1aπ.u(n−1)
dX(z)dz=−az−21+az−1
−z−1[−zdX(z)dz]=z−1[−az−11+az−1]
Taking the inverse z-transform, we get
z−1[−zdX(z)dz]=z−1[−az−11+az−1]
n.x(n)=z−1[−az−11+az−1]
We know that,
an.u(n)⟷11−az−1|z|>|a|
(−a)a.u(n)⟷11+az−1|z|>|a|
a(−a)n.u(n)⟷a1+az−1,|z|>|a|
Using the time shift property, we obtain
a(−a)n−1.u(n−1)⟷az−11+az−1,|z|>|a|
−(−a)nu(n−1)⟷az−11+az−1|z|>|a|
Consequently,
n.x(n)=−(−a)nu(n−1)
x(n)=−(−a)nnu(n−1)
=1n(−1)n+1an.u(n−1)