Is the function defined by x2 - sin x+5 continuous at x=π ?
Here, f(x)=x2−sinx+5
LHL = limx→pi−f(x)=limx→pi−λ(x2−sinx+5)
Putting x=π−h as x→π− when h→0
∴limx→0−((π−h)2−sin(π−h)+5)
limx→0−((π−h2−2πh−sinh+5)
=π2+0+0-sin(0)+5
RHL = limx→0−f(x)=limx→0−(x2−sinx+5)
Putting x=π−h as x→a+ when h→0
∴limh→0[(π+h)2−sin(π+h)+5]=limh→0[π2+h2+2πh+sinh+5)]=π2+5
Also, f(π)=(π2−sinπ+5=π2+5)
∴ LHL=RHL=f(x), Hence, function is continuous at x=π.