The correct option is B False
g(x)=Ltn→∞x2n=⎧⎨⎩0,x<11,x=1∞,x>1
f(x)=Ltn→∞log(2+x)−x2nsinx1+x2n=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩log(2+x),x<1log(2+x)−sinx2,x=1−sinx,x>1
f(1−)=log3 and f(1+)=−sin1 and f(1)=log3−sin12
Since, f(1−)≠f(1)≠f(1+)
Therefore, f is discontinuous at x=1