The correct option is A a3
Let xa+yb=a2+b2 -- (1)
And xa2+yb2=a+b -- (2)
Multiplying eqn (1) with b, we get
bxa+y=a2b+b3 -- (3)
Multiplying eqn (2) with b2, we get
b2xa2+y=ab2+b3 -- (4)
Subtracting eqn (3) from eqn (4), we get
b2xa2−bxa=ab2−a2b
Dividing both sides by b, we get
bxa2−xa=ab−a2
⇒xa(ba−1)=a(b−a)
⇒xa(b−aa)=a(b−a)
⇒xa(1a)=a
⇒x=a3