It y=√1−sin4x+1√1+sin4x−1 then one of the values of y is/are-
y=√1−sin4x+1√1+sin4x−1
=√(sin2x−cos2x)2+1√(sin2x+cos2x)2−1
⇒y=|sin2x−cos2x|+1sin2x+cos2x−1
Case I: sin2x>cos2x
⇒y=sin2x+1−cos2xsin2x+cos2x−1
=2sinxcosx+2sin2x2sinxcosx−2sin2x
=cosx+sinxcosx−sinx
=1+tanx1−tanx
y=tan(π4+x)
Case II, sin2x<cos2x
⇒y=cos2x−sin2x+1sin2x+cos2x−1
=2cos2x−2sinxcosx2sinxcosx−2sin2x
=2cosx(cosx−sinx)2sinx(cosx−sinx)
⇒y=cotx