It is given ex=1+x1!+x22!+x33!........ Find the value of the limit
(limx→0ex−1−xx2)×16
If we substitute x=0 in the given expression we will get 00 form.
But we are given ex=1+x1!+x22!+x33!........
We will use this expansion to solve the problem.
⇒(limx→0ex−1−xx2)=(limx→01+x+x22!+x33!..−1−xx2)
=limx→0x22!+x33!x2.....
=limx→0(12+x3!+x24!......)
=12
⇒Answer=12×16
=8