wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

It is given that 3a+2b=5c, then find the value of 27a3+8b3125c3 if abc=0.

Open in App
Solution

Given: 3a+2b=5c

3a+2b5c=0(i)

We know that x3+y3=(x+y)33xy(x+y)

Now, 27a3+8b3125c3=(3a)3+(2b)3+(5c)3

=(3a+2b)33(3a)(2b)(3a+2b)125c3 [x3+y3=(x+y)33xy(x+y)]

=(5c)318ab(5c)(5c)3 From given

=18abc

=(18)×0 [Given that abc=0]

=0


flag
Suggest Corrections
thumbs-up
161
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Polynomials in One Variable
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon