It is given that 3a+2b=5c, then find the value of 27a3+8b3−125c3 if abc=0.
Given: 3a+2b=5c
3a+2b−5c=0……(i)
We know that x3+y3=(x+y)3−3xy(x+y)
Now, 27a3+8b3−125c3=(3a)3+(2b)3+(−5c)3
=(3a+2b)3−3(3a)(2b)(3a+2b)−125c3 [x3+y3=(x+y)3−3xy(x+y)]
=(5c)3−18ab(5c)−(5c)3 From given
=18abc
=(18)×0 [Given that abc=0]
=0