It is given that complex nunbers z1 and z2 satisfy |z1|=2 and |z2|=3. If the included angle of their corresponding vectors is 60o, then find the value of ∣∣∣z1+z2z1−z2∣∣∣.
A
√19√7
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
√7√19
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
√12√19
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
√19√12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A√19√7 Let z1=2(cosθ+isinθ)⟹z2=3((cos(θ+60o)+isin(θ+60o)) ⟹z2z1=3(cos(θ+60o)+isin(θ+60o))2(cosθ+isinθ) z2z1=32(cos60o+isin60o)=32(12+i√22) ∴∣∣∣z1+z2z1−z2∣∣∣=∣∣
∣
∣∣1+z2z11−z2z1∣∣
∣
∣∣ =∣∣
∣
∣∣1+32(12+i√32)1−32(12+i√32)∣∣
∣
∣∣ =∣∣∣7+i3√31−i3√3∣∣∣ =√49+27√1+27=√76√28=√19√7 Ans: A