It is known that sinβ=45 & 0<β<π then the value of √3sin(α+β)−2cosπ6cos(α+β)sinα is
Lety=√3sin(α+β)−2cosπ6cos(α+β)sinα=√3sin(α+β)−4√3cos(α+β)sinα=3sin(α+β)−4cos(α+β)√3sinαCaseI:IfβliesinIquadranti.e.tanβ>0,then,y=3sinα(35)+3cosα(45)−4cosα(35)+4(45)sinα√3sinα=5sinα√3sinα=5√3CaseII:IfβliesinIIquadrant,i.e.tanβ<0then,y=⎛⎜ ⎜ ⎜⎝75sinα+245cosα√3sinα⎞⎟ ⎟ ⎟⎠=√3(7+24cotα)15.