It is proposed to add to a square lawn with each side 50 m, two circular ends, the centre of each circle being the point of intersection of the diagonals of the square. Find the area of the whole lawn.( Take π=3.14)
A
4153.5m2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
6212.5m2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3212.5m2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
4412.5m2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C3212.5m2 Given−AlawnconsistsofasquareABCDofside50m.ItisflankedbytwosegmetsAED&BFC.ThecetresofthesegmentslieonthepointofintersectionOofthediagonalsAC&BDofthesquare.Tofindout−ar.ABFCDE=?Solution−ar.ABFCDE=arADE+arABCD+arBCF=2ar.ADE+arABCD..........(i).(sincearADE=arBCF)NowABCDisasquareofside50m.∴ar.ABCD=side2=502cm2=2500cm2.........(ii)andthediagonalAC=side×√2=50×√2m.Sincediagonalofasquarebisecteachotheratrightangles,wehave∠BOC=∠AOD=90oandOA=OC=12×AC=12×50×√2m=25×√2m∴Bythegivenconditiontheradiusofthesegment=r=25×√2mandthecentralangle=θ=90o..............(iii)Weknowthatar.segment=[θ360o×π−sinθ2cosθ2]×r2whenθistheanglesubtendedbythearcofthesegmenttothecentreofthecircle(orcentralangle),r=radiusofthecircle.So2×ar.ADE=2×[90o360o×π−sin90o2cos90o2]×25×√22m2(fromiii)=2×[14×3.14−1√2×1√2]×1250m2=[1.57−1]×1250m2=712.5m2.......(iv)So,by(i)ar.ABFCDE=(2500+712.5)m2(usingii+iv)=3212.5m2.Ans−OptionC.