wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

It is proposed to add to a square lawn with each side 50 m, two circular ends, the centre of each circle being the point of intersection of the diagonals of the square. Find the area of the whole lawn.( Take π=3.14)

A
4153.5m2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
6212.5m2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3212.5m2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
4412.5m2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 3212.5m2
GivenAlawnconsistsofasquareABCDofside50m.ItisflankedbytwosegmetsAED&BFC.ThecetresofthesegmentslieonthepointofintersectionOofthediagonalsAC&BDofthesquare.Tofindoutar.ABFCDE=?Solutionar.ABFCDE=arADE+arABCD+arBCF=2ar.ADE+arABCD..........(i).(sincearADE=arBCF)NowABCDisasquareofside50m.ar.ABCD=side2=502cm2=2500cm2.........(ii)andthediagonalAC=side×2=50×2m.Sincediagonalofasquarebisecteachotheratrightangles,wehaveBOC=AOD=90oandOA=OC=12×AC=12×50×2m=25×2mBythegivenconditiontheradiusofthesegment=r=25×2mandthecentralangle=θ=90o..............(iii)Weknowthatar.segment=[θ360o×πsinθ2cosθ2]×r2whenθistheanglesubtendedbythearcofthesegmenttothecentreofthecircle(orcentralangle),r=radiusofthecircle.So2×ar.ADE=2×[90o360o×πsin90o2cos90o2]×25×22m2(fromiii)=2×[14×3.1412×12]×1250m2=[1.571]×1250m2=712.5m2.......(iv)So,by(i)ar.ABFCDE=(2500+712.5)m2(usingii+iv)=3212.5m2.AnsOptionC.
335069_241880_ans.png

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Quadrilaterals
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon