Energy released in the nuclear fusion reaction is given by,
Q=(Δm)c2
Here, Δm=2M(1H2)−M(2He4)
⇒Δm=(2×2.0141 u)−4.00264 u=0.0256 u=0.0256 u×c2
⇒Q=0.0256×931.5 MeV
⇒Q=23.8464 MeV=23.8464×1.6×10−13 J
⇒Q=38.15424×10−13 J
Since, only 25% of energy is used in the reactor,
The effective energy used,
Q′=25100×Q
⇒Q′=25100×38.15424×10−13
⇒Q′=9.53856×10−13 J
Two deuterium nuclei are involved in a fusion reaction,
∴ The energy released per deuterium
E1=9.53856×10−132 J=4.76928×10−13 J
For 200 MW power per day, the number of deuterium nuclear required,
n=P×tE1=200×106×864004.76928×10−13 [∵1 day=86400 sec]
⇒n=3.62319×1025
We know that, 6×1023 atoms are present in 2 g of deuterium.
Then, the mass of deuterium that contains 3.623×1025 atoms is given by,
m=2×3.62319×10256×1023 g=120.77 g (or)
m≈120 g
∴ x=10