It is required to hold equal charges, q in equilibrium at the corners of a square. What charge when placed at the centre of the square will do this?
Open in App
Solution
Let ABCD be a square of side a, and Q be the charge placed at the centre. r=a√22=a√2 →FBA=kq2a2^i, →FBD=−kq2a2^j →FBA=kq2(a√2)2(cos45o^i−sin45o^j) →FBA=kQq(a/√2)2(cos45o^i−sin45o^j) Here ^i and ^j have usual meaning. Net force on the charge at B is →FR=(kq2a2+kq2(a√2)2cos45o+kQq(a/√2)2cos45o)^i−(kq2a2+kq2(a√2)2sin45o+kQq(a/√2)2sin45o)^j=Fx^i+Fy^j For change, q to be in equilibrium at B, the net force on it must be zero. ∴Fx=0 & Fy=0 ⟹k[q2a2+q2(a/√2)2.1√2+Qq(a/√2)2.1√2]=0 ∴Q=−q4(1+2√2) Similarly, Fy=0, if Q=−q4(1+2√2).