Solve for the value of x and y: 31x−42y=51 and 42x−31y=95
Let 31x−42y=51...(i) and 42x−31y=95...(ii)
On adding (i) and (ii), we get,
⇒31x−42y+42x−31y=51+95
⇒73x−73y=146
⇒x−y=2 ...(iii)
On subtracting (i) from (ii), we get,
⇒42x−31y−31x+42y=95−51
⇒11x+11y=44
⇒x+y=4...(iv)
Now, adding (iii) ad (iv), we get,
⇒x−y+x+y=2+4
⇒2x=6
⇒x=3
Therefore,
⇒y=4−x=4−3=1 [From (iv)]
Hence, x=3 and y=1