Add:
a+b−3,b−a+3,a−b+3
Given a+b−3,b−a+3,a−b+3By adding the above values, we get =a+b−3+b−a+3+a−b+3Grouping the like terms=(a−a+a)+(b+b−b)−3+3+3=a+b+3Hence, a+b+3 is the final answer.
Question 1 (iv)
Simplify combining like terms:
3a - 2b - ab - (a - b + ab) + 3ab + b - a
Question 92 (iv)
Factorise the following using the identity a2−b2=(a+b)(a−b).
3a2b3−27a4b
Question 3(iv) Simplify: (a+b)(c-d)+(a-b)(c+d)+2(ac+bd)
Question 3 (iv)
Subtract:
a(b - 5) from b(5 - a)