x - 3y - 7 = 0
3x - 3y - 15 = 0
a1a2=13
b1b2=−3−3=1
c1c2=−7−15=715
a1a2≠b1b2
So, they will intersect each other at a unique point.
Therefore, there will be a unique solution for these equations.
By cross-multiplication,
x45−(21)=y−21−(−15)=1−3−(−9)
x24=y−6=16
x24=16 and y−6=16
x = 4 and y = -1
∴ x = 4, y = -1