The integral is,
y= ∫ ( 2 x 2 + e x ) dx
Here, y is the solution of integral.
Use the formulas of ∫ x n dx = x n+1 n+1 +A and ∫ e x dx = e x +B, where Aand B are constants.
y= ∫ ( 2 x 2 + e x ) dx =2 ∫ x 2 dx+ ∫ e x dx = 2 x 2+1 2+1 + e x +D = 2 x 3 3 + e x +D
Where, D is constant.
Thus, the solution of integral is 2 x 3 3 + e x +D.