The correct option is
A 0 or 3⇒ Given quadratic equation is
(k+1)x2−2(k−1)+1=0, comparing it with
ax2+bx+c=0⇒ We get, a=(k+1),b=−2(k−1) and c=1
⇒ It is given that roots are real and equal.
∴ b2−4ac=0
⇒ (−2(k−1))2−4(k+1)(1)=0
⇒ 4(k−1)2−4k−4=0
⇒ 4(k2−2k+1)−4k−4=0
⇒ 4(k2−2k+1−k−1)=0
⇒ k2−3k=0
⇒ k(k−3)=0
⇒ k=0 and k−3=0
∴ k=0 or k=3