KLMN is an isosceles trapezium whose diagonals cut at X and KL is parallel to NM. If ∠KNL=25∘,∠KMN=30∘, find (a)∠KXN(b)∠MLN.
A
∠KXN=60∘
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
∠KXN=80∘
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
∠MLN=85∘
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
∠MLN=95∘
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are B∠MLN=95∘ C∠KXN=60∘ In ΔsKLN and KLM KN=LM (Isos. trap) ∠NKL=∠KLM (Prop. of isos. trap.) KL=KL (Common side) ∴ΔKLN≅ΔKLM ....SAS
⇒∠KNL=∠KML ....cpct Thus ∠LMN=25∘+30∘=55∘ Now, ∠KNM=∠LMN ⇒KNL+∠LNM=55∘⇒55∘−25∘=35∘ In ΔNXM,∠NXM=180∘−(∠XNM+∠XMN) =180∘−(30∘+30∘)=180∘−60∘=120∘ (i) Now, ∠KXN=180∘−∠NXM=180∘−120∘=60∘ (Linear pair) Also, ∠LXM=∠KXN=60∘ (ii) Now, in ΔMLX,∠MLX(∠MLN)=180∘−(60∘+25∘) =180∘−85∘=95∘