The correct options are
A limit does not exist when a=π6
B L=−1 when a=π
D L=1 when a=π2
L=limx→a|2sinx−1|2sinx−1
For a=π/6,
L.H.L.=limx→π−61−2sinx2sinx−1=−1
R.H.L=limx→π+62sinx−12sinx−1=1
Hence, the limit does not exist.
For a=π,limx→π1−2sinx2sinx−1=−1 (as in neighborhood of π, sin x is less than 12).
For a=π2,limx→π22sinx−12sinx−1=1 (as in neighborhood of π/2, sin x approaches 1).