Given that
f(0)=1, g(0)=2, h(0)=3 and
(fg)′(0)=6,(gh)′(0)=4,(hf)′(0)=5
f′(0)g(0)+f(0)g′(0)=6⇒2f′(0)+g′(0)=6 …(i)g′(0)h(0)+g(0)h′(0)=4⇒3g′(0)+2h′(0)=4 …(ii)h′(0)f(0)+h(0)f′(0)=5⇒h′(0)+3f′(0)=5 …(iii)
From (i) and (ii),
6f′(0)−2h′(0)=14 …(iv)
From (iii) and (iv),
f′(0)=2, h′(0)=−1
Now, from equation (i),
g′(0)=2
(fgh)′(0)=∑f(0)g(0)h′(0)=2⋅2⋅3+1⋅2⋅3+1⋅2⋅(−1)=12+6−2=16