(1+31)(1+54)(1+79)⋯(1+(2n+1)n2)=(n+1)2
Let P(n)(1+31)(1+54)(1+79)⋯(1+(2n+1)n2)=(n+1)2
For n = 1
P(1)=1+(2×1+1)12=(1+1)2⇒1+3=(2)2⇒4=4∴ P(1) is true
Let P(n) be true for n = k
∴ P(k)
(1+31)(1+54)(1+79)⋯(1+(2k+1)k2)=(k+1)2∴R.H.S.=(k+2)2L.H.S=(k+1)2[1+(2k+3)(k+1)2]=(k+1)2[(k+1)2+(2k+3)(k+1)2]=k2+4k+4=(k+2)2
∴P(k+1) is true
thus P (k ) is true ⇒P(k+1) is true
Hence by principle fo mathematical induction,