We have to find the value of (1−ω+ω2)(1−ω2+ω4)(1−ω4+ω8)(1−ω8+ω16)→(1)
We know that since 1,ω,ω2are cube roots of unity
1+ω+ω2=0
And also
ω1=ω4=…=ω3n+1
ω2=ω5=…=ω3n+2
ω3=ω6=…=ω3n
∴ 1+ω2=−ω
Now
(1−ω+ω2)
=(1+ω2−ω)
=−2ω (∵1+ω2=−ω)→(2)
Also
(1−ω2+ω4)=−2ω2 (\because ω1=ω4=…=ω3n+1 &(∵1+ω=−ω2)
For the third term
(1−ω4+ω8)=(1−ω1+ω2)
=−2ω→(3)
Similarly
Fourth term is
(1−ω8+ω16)=−2ω2→(4)
Substituting values of (2),(3)&(4) in (1)
(−2ω)(−2ω2)(−2ω)(−2ω2)=16ω3ω3=16(∵ω3=1)
Hence option (D) is the correct answer